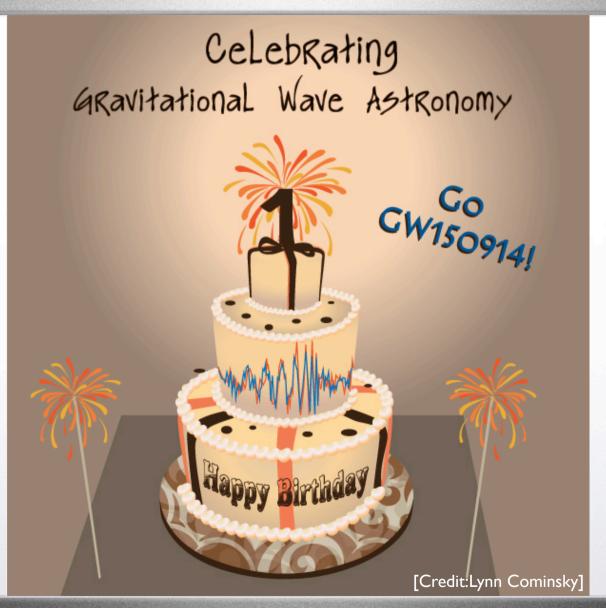


Neutron Star Gravitational-Wave Transient Searches

Francesco Pannarale



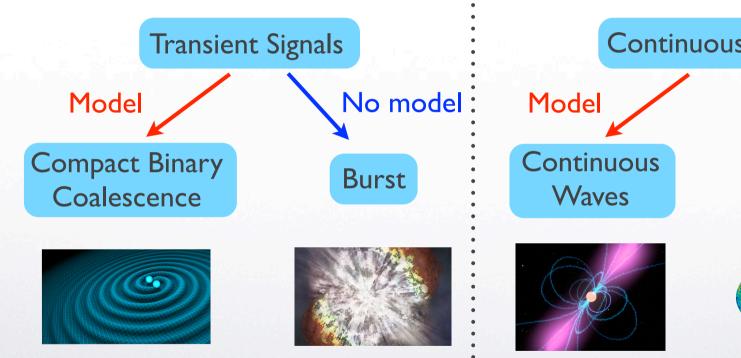
Violent Phenomena

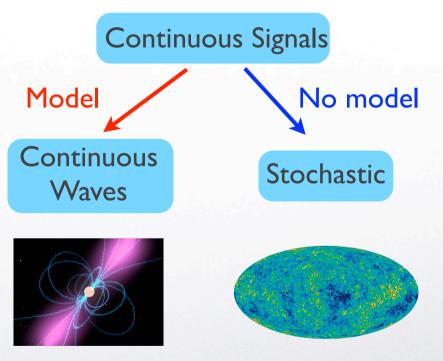
AXPs, SGRs, hyperflares, 15% (?) of short GRBs, dynamical/secular instabilities, pulsar glitches, fall-back accretion onto newborn NSs, proto-magnetar deformations,

Post-merger of binary NS coalescences

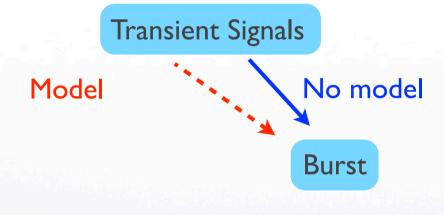
Violent Phenomena

- Expected or known to be associated with gravitational-wave emission
- Challenge: many uncertainties (emission) mechanism, waveform), low event rates,...
- Vision: GW signals associated with these phenomena would convey unique information on the NS equation of state



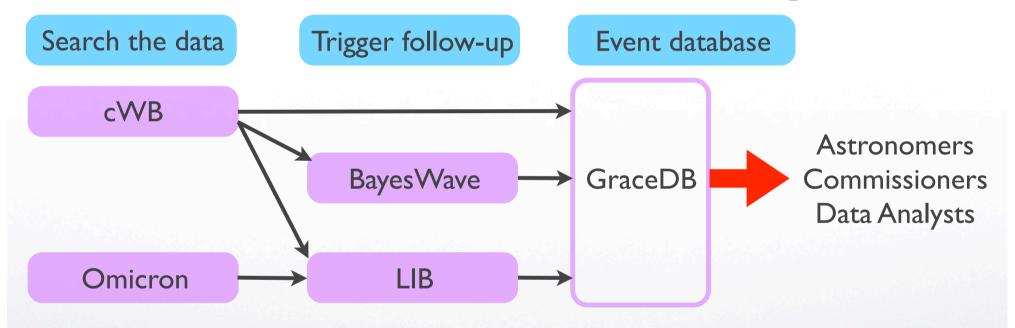


GW Searches



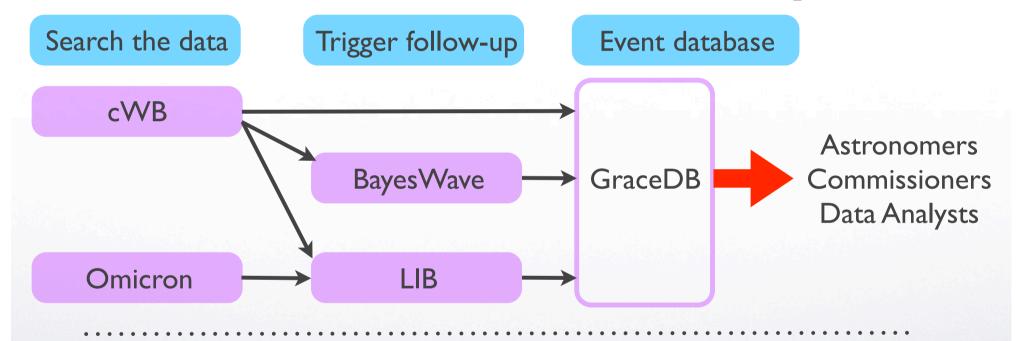
GW Searches

NS dedicated search



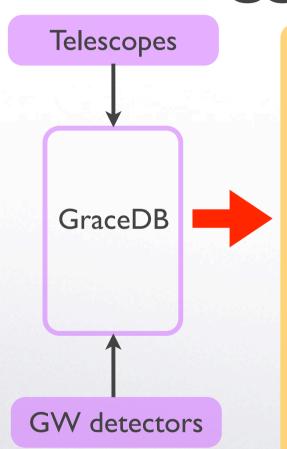
Search Plan: All-Sky

- Target transient signals with ms to s duration over 32-4096 Hz
- Independent validation of results



Search Plan: All-Sky

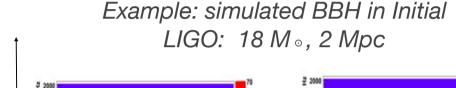
- Long-duration (10-500s) transient GW events: cWB, X-SphRad, STAMP
- 24-2000 Hz band (24-1000Hz for X-SphRad)

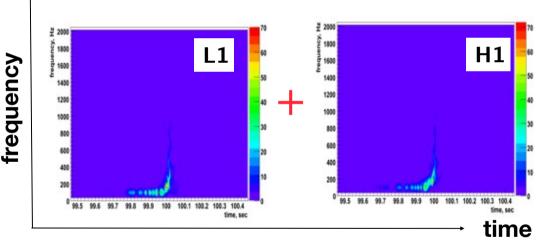


Triggered Search Plan

NS dedicated GW search

- I. Hyperflares in Galactic magnetars:
 - long-duration GRB-like analyses
 - follow-up short-duration candidate signals with standard burst reconstruction tools
- 2. Post-merger of NS-NS remnants:
 - standard burst tools to characterise and reconstruct short-duration, high-frequency signal
 - open-mind about targeting any later longduration bursts from stable remnants

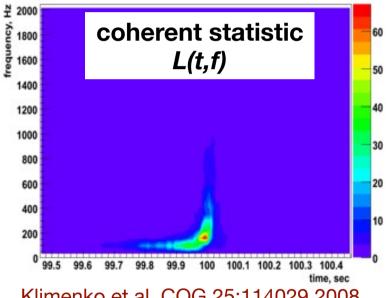



LIGO

Coherent Burst Search

- Seek excess power in timefrequency domain (instead of matched filtering) by identifying clusters of "hot" pixels in time-frequency maps
- Decompose data with multiresolution basis (wavelets, short Fourier transforms)

LIGO


Coherent Burst Search

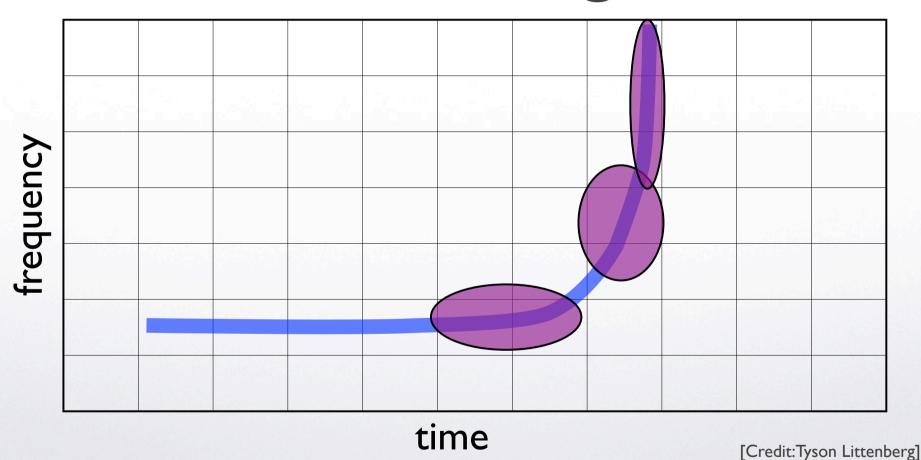
Coherent analysis: likelihood maximized over waveform, sky-location

$$L(t,f) = \max_{h_+,h_\times,\theta,\phi} \sum_{k} \frac{x_k^2[t,f] - (x_k[t,f] - \xi_k[t,f])^2}{\sigma_k^2(f)}$$

$$\xi_k = h_+ F_{+,k} + h_\times F_{\times,k}$$
 - kth detector response

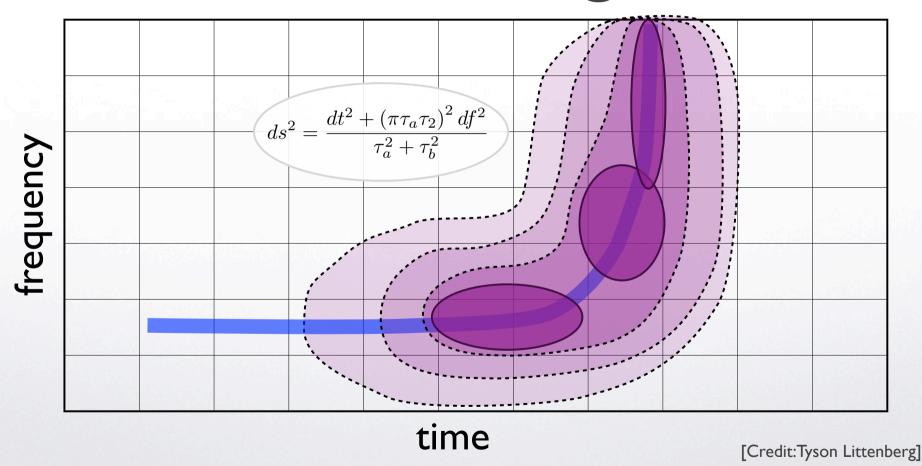
Klimenko et al, CQG 25:114029,2008

Noise fluctuations can be eliminated based on their non-correlation between detectors



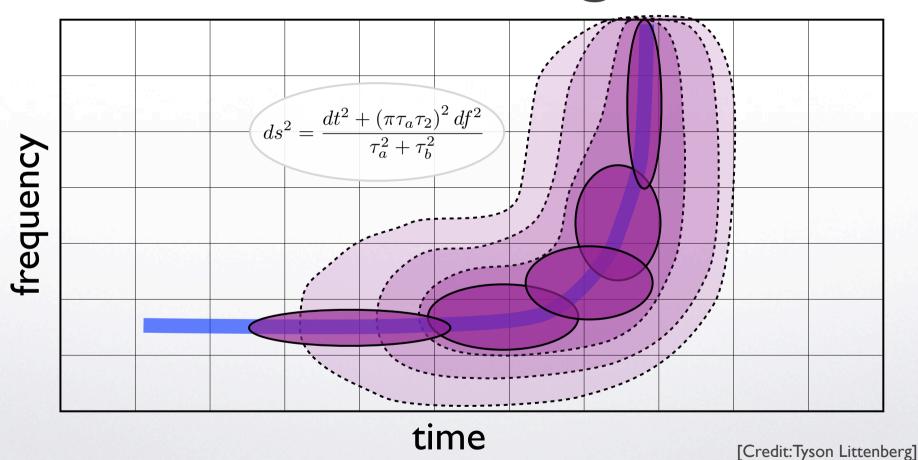
Francesco Pannarale

NewCompStar meeting on oscillations and instabilities in NSs Southampton, 14/09/16



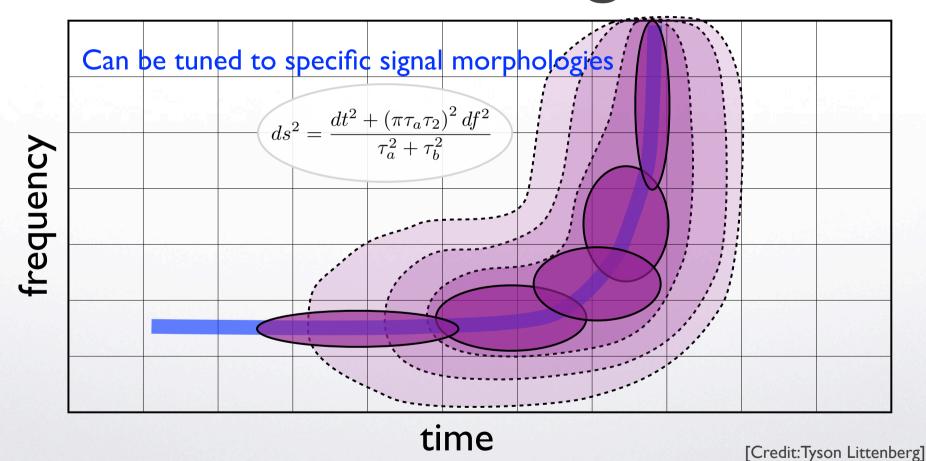
Francesco Pannarale

NewCompStar meeting on oscillations and instabilities in NSs Southampton, 14/09/16



Francesco Pannarale

NewCompStar meeting on oscillations and instabilities in NSs Southampton, 14/09/16



Francesco Pannarale

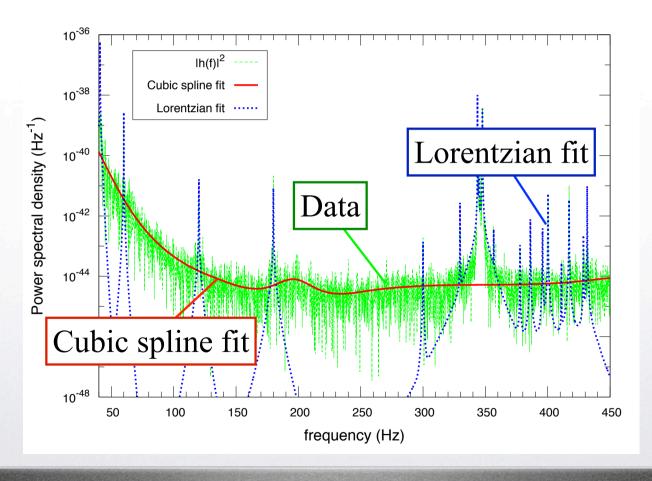
NewCompStar meeting on oscillations and instabilities in NSs Southampton, 14/09/16

Follow-up Analyses

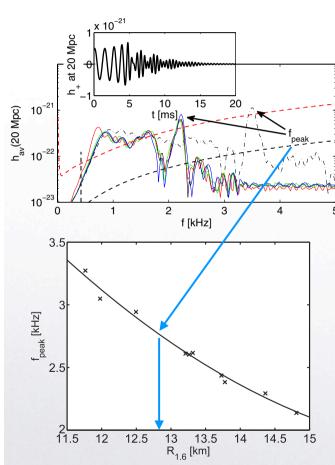
Bayes Wave: operates in the Fourier domain, using a trans-dimensional Reversible Jump Markov Chain Monte Carlo to build linear combinations of sine-Gaussians

- Glitch model fits data separately in each interferometer with an independent linear combination of wavelets
- Signal model reconstructs the candidate event at the center of the Earth, taking into account the response of each detector
- Uses a parametrized phenomenological model (BayesLine) for the instrument noise spectrum, simultaneously characterizing the Gaussian noise and instrument/astrophysical transients

[Cornish+, CQG 101, 135012 (2015), Littenberg+, PRD 91, Phys. Rev. D 91, 084034 (2015)]



Follow-up Analyses



- Quasi-stable (hyper-)massive NS remnant
- Merger/post-merger dynamics produce a rich GW spectrum:
 - Emission dominated by post-merger
 f-mode oscillations (f_{peak})
 - ▶ Subdominant emission from (2,0)-mode coupling & short-lived bar structure
- \bigcirc Locate $f_{peak} \rightarrow constrain NS EOS$

[Bauswein+, PRL 101, 011101 (2012), Clark+, CQG 33, 085003 (2016)]

Year	Instrument	$\mathrm{SNR}_{\mathrm{full}}$	D_{hor} (Mpc)	$\dot{\mathcal{N}}_{\text{det}} \text{ (year}^{-1})$
Now-2020	aLIGO	$2.99_{2.37}^{3.86}$	$29.89_{23.76}^{38.57}$	$0.01_{0.01}^{0.03}$
2020+	A+	$7.89_{6.25}^{10.16}$	$78.89_{62.52}^{101.67}$	$0.13_{0.10}^{0.20}$
2027-28	LV	$14.06_{11.16}^{18.13}$	$140.56_{111.60}^{181.29}$	$0.41^{0.88}_{0.21}$
2035+	ET-D	$26.65_{20.81}^{34.28}$	$266.52_{208.06}^{342.80}$	$2.81_{1.33}^{5.98}$
2035+	CE	$41.50_{32.99}^{53.52}$	$414.62_{329.88}^{535.221}$	$10.59_{5.33}^{22.78}$

Notation: $50 th_{\,90 th}^{\,10 th}$ percentile over the 50 waveforms used

Finite simulation time and numerical damping of the post-merger oscillations likely lead to an underestimate of the total SNR

Year	Instrument	SNR_{full}	$D_{\rm hor}$ (Mpc)	$\dot{\mathcal{N}}_{\mathrm{det}}$ (year ⁻¹)
Now-202	0 aLIGO	$2.99_{2.37}^{3.86}$	$29.89_{23.76}^{38.57}$	$0.01_{0.01}^{0.03}$
2020+	A+	$7.89_{6.25}^{10.16}$	$78.89^{101.67}_{62.52}$	$0.13_{0.10}^{0.20}$
2027-28	LV	$14.06_{11.16}^{18.13}$	$140.56_{111.60}^{181.29}$	$0.41^{0.88}_{0.21}$
2035+	ET-D	$26.65_{20.81}^{34.28}$	$266.52_{208.06}^{342.80}$	$2.81_{1.33}^{5.98}$
2035+	CE	$41.50_{32.99}^{53.52}$	$414.62_{329.88}^{535.221}$	$10.59_{5.33}^{22.78}$

Notation: $50 th_{\,90 th}^{\,10 th}$ percentile over the 50 waveforms used

Finite simulation time and numerical damping of the post-merger oscillations likely lead to an underestimate of the total SNR

Use input from models: Fourier-domain principal component analysis model for 50 NS-NS waveforms takes from high-dimensional (and costly) parameter space to dominant waveform features.

Year	Instrument	\mathcal{M}	δf_{peak} (Hz)	$\delta R_{1.6}^{\rm stat}$ (m)	$\delta R_{1.6}$ (m)
Now-2020	aLIGO	$0.93_{0.91}^{0.96}$	$135.7_{98.6}^{184.9}$	$363.4_{235.2}^{476.2}$	$429.1_{507.9}^{317.0}$
2020+	A+	$0.93_{0.89}^{0.96}$	$136.4_{98.6}^{180.8}$	$359.7_{227.5}^{496.6}$	$425.5_{313.0}^{526.6}$
2027-28	LV	$0.93_{0.90}^{0.96}$	$139.0^{184.6}_{96.7}$	$375.3_{228.9}^{478.5}$	$420.9_{509.5}^{318.2}$
2035+	CE	$0.91_{0.93}^{0.96}$	$138.1_{98.6}^{188.3}$	$363.9_{234.7}^{483.5}$	$424.9_{514.1}^{319.8}$
2035+	ET-D	$0.94_{0.92}^{0.97}$	$138.8_{105.3}^{185.3}$	$401.8_{230.6}^{506.7}$	$443.1^{318.1}_{536.1}$

[Errors at SNR=5]

Use input from models: Fourier-domain principal component analysis model for 50 NS-NS waveforms takes from high-dimensional (and costly) parameter space to dominant waveform features.

Year	Instrument	\mathcal{M}	δf_{peak} (Hz)	$\delta R_{1.6}^{\rm stat}$ (m)	$\delta R_{1.6}$ (m)
Now-2020	aLIGO	$0.93_{0.91}^{0.96}$	$135.7^{184.9}_{98.6}$	$363.4_{235.2}^{476.2}$	$429.1_{507.9}^{317.0}$
2020+	A+	$0.93_{0.89}^{0.96}$	$136.4_{98.6}^{180.8}$	$359.7_{227.5}^{496.6}$	$425.5_{313.0}^{526.6}$
2027-28	LV	$0.93_{0.90}^{0.96}$	$139.0^{184.6}_{96.7}$	$375.3_{228.9}^{478.5}$	$420.9_{509.5}^{318.2}$
2035+	CE	$0.91_{0.93}^{0.96}$	$138.1_{98.6}^{188.3}$	$363.9_{234.7}^{483.5}$	$424.9_{514.1}^{319.8}$
2035+	ET-D	$0.94_{0.92}^{0.97}$	$138.8_{105.3}^{185.3}$	$401.8_{230.6}^{506.7}$	$443.1^{318.1}_{536.1}$

[Errors at SNR=5]

Overview

- NS transients do not have an analytic/numerical mapping between physical parameters and strain
- Solid GW search plan in place wherein inference is still possible:
 - Reconstructions without templates
 - Identification of robust GW signal features
 - Interplay with NS models (NR, but not only)
- Promising scenarios to constrain the NS equation of state

References

- coherent WaveBurst: <u>Klimenko+, CQG 25, 114029 (2008)</u>.
- Omicron-LAL-Inference-Bursts: <u>Lynch+, arXiv:1511.05955</u>.
- BayesWave/BayesLine: <u>Cornish+, CQG 32, 135012 (2015)</u>, <u>Littenberg+, PRD 91, PRD 91, 084034 (2015)</u>.
- STAMP: Thrane+, PRD 83, 083004 (2011).
- X-Pipeline/X-SphRad: <u>Sutton+, NJPh 12, 053034 (2010), Was +, PRD 86, 022003 (2012); Edwards+, JoP: CS 363, 012025 (2012), Edwards, PhD Thesis, Cardiff University (2013).</u>
- And special thanks to James Clark!